RDF as a Data Structure for Software Engineering

Axel Rauschmayer, axel@rauschma.de
Institut fiir Informatik, Ludwig-Maximilians-Universitat Miinchen

Abstract and Introduction

Software engineers encounter numerous models in their day-to-day work: the
source code, documentation, requirements, bug tracking, a web site used for
public collaboration etc. Currently, many ad-hoc ways exist to manage all these
models in an integrated fashion. HYENA is a platform for integrated software
engineering model management (ISEMM) that uses RDF for principled model
manipulation and storage. It brings out a different side of RDF, where one is
less concerned with its knowledge representation abilities and more focused on
using it as a graph-based data structure.

Requirements for an ISEMM Platform

For each model one encounters in ISEMM, model-specific support must be im-
plemented first at the API level to make programming with the model easier.
Second, one provides the end user with a graphical interface for editing the
model. Once support for the separate models is complete, there need to be ways
to integrate them, especially where they influence each other. Finally, as soft-
ware engineering is often about communication, it should be easy to publish
and collaboratively edit models. All of these tasks need to be facilitated by an
ISEMM engine. When it comes to generic model editing the following operations
are frequently used and are thus requirements for the ISEMM data structure.

— Modularization: is one crucial element for managing complexity in software
engineering. Accordingly, programming languages feature many modulariza-
tion techniques, but few of them extend to artifacts other than code. Mod-
ularization should permit us to join and separate modules/models at will
which lets us explore concerns (encapsulated in modules) both separately
and combined.

— Annotation: For documentation, categorization etc., one often has to add
new information to models anywhere and without interfering with their pro-
cessing. Note that this can also be considered a modularization problem, the
annotated data being a new model that is layered on top of others.

— Querying: Having integrated several models, we would like to examine the
integrated information space: filtering, projections and browsing should allow
us to discover concerns that cut across models which further extends our
concern exploration abilities.

— Multi-dimensional categorization: with multi-dimensional separation of con-
cerns, software engineering recognized the fact that a software system is a
multi-dimensional space. All functionality related to a concern cuts across it
as a hyper-plane. Having the ability to make these hyper-planes explicit (to
reify them) is important for organizing the system. Thus, any categorization
has to be multi-dimensional where artifact kind is just another dimension.



A Platform for Software Engineering

The cornerstone of HYENA is its universal data structure, RDF. It supports mod-
ularization via dynamic merging of models. Using a shared vocabulary for nodes
and separate vocabularies for predicates, one can integrate models while their
processing stays independent. Everything can be annotated in RDF, because
any structure can be reified. RDF query languages such as SPARQL provide
formally sound query mechanisms. Multi-dimensional categorization is possible
because RDF’s relational nature is inherently multi-dimensional. Finally, URI-
based nodes make it easy to integrate many kinds of artifacts. The remaining
requirements are met by the following parts of HYENA:

— Vodules (vocabulary modules): provide complete support for one kind of
model. In addition to declarative data from an RDF ontology, vodules sup-
port model editing via an API, GUI components and/or web services.

— Application programming interface (API): The core API of HYENA provides
infrastructure functionality, everything else is added via vodules. Vodules are
thus both clients and providers of API functionality. The API of HYENA is
even useful for stand-alone programs.

— Web service framework: Each model managed by HYENA can be exposed as
a web service, in a model-dependent manner. For example, an RDF model
encoding a wiki web site will be displayed as a series of web pages.

— Graphical user interface (GUI) components: HYENA is itself integrated in
the Eclipse integrated development environment and extends rather than
replaces its facilities. RDF-specific functionality such as bookmarks and in-
teractive filtering are the foundation on which vodules base their own GUI
contributions. These contributions are essential for shielding the user from
many complexities of RDF when editing a custom model.

Vodules that Come Packaged with Hyena

HYENA’s standard vodules make it a useful software engineering environment
right out of the box:

— JTUBE, Java source code management: makes Java artifacts accessible to
HYENA. Other models can now provide a lightweight semantic layer on top
of Java source code. JTUBE tracks changes to the code and co-evolves linked
models. Furthermore, JTUBE allows one to move back and forth between
code and associated RDF data in Eclipse.

— PEERSTORM, collaborative conceptual brainstorming: enables a group of
people to work together on conceptual sketches such as requirements, de-
sign ideas, outlines and task lists. Editing is distributed and changes are
displayed in real time. Concepts are expressed as snippets, an RDF-encoded
data structure that is similar to topic maps.

— WIKKED, web-based publishing and editing: a vodule for storing a wiki in
an RDF graph. Displaying and editing the wiki is implemented as a web
service, as is uploading of new data. JTUBE uses WIKKED to publish Java
source code; PEERSTORM displays snippets in various ways.



